If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=384
We move all terms to the left:
x^2-(384)=0
a = 1; b = 0; c = -384;
Δ = b2-4ac
Δ = 02-4·1·(-384)
Δ = 1536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1536}=\sqrt{256*6}=\sqrt{256}*\sqrt{6}=16\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{6}}{2*1}=\frac{0-16\sqrt{6}}{2} =-\frac{16\sqrt{6}}{2} =-8\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{6}}{2*1}=\frac{0+16\sqrt{6}}{2} =\frac{16\sqrt{6}}{2} =8\sqrt{6} $
| (3x+12)+(5x+5)+(4x+7)=180 | | 4y+9+5y=10y-1 | | x+.15x=50000 | | 10.5h=210 | | 6x+2-(x-5)=8x+4 | | -23x+28+4x^2=0 | | x/108000=0 | | 81+41+6x+4=180 | | 1.8x(2+3)=3.5(+2 | | 9+9y=10y-1 | | 2x+1x+27=180 | | 90+39+7x+16=180 | | 2(3x+3)=28 | | 2x+1=130 | | 29-y+8=2y | | -12=-8m+12 | | (4x+5)=-x | | d(d+7)d=2 | | 10x=1.75 | | 7x-2(x+3=1-2(4-3^3) | | f/3-8=-44.3 | | 7x-(x+5)=1-2(4-3x) | | n/5-4=(-10) | | 4.44=3(j-15)-4.56 | | n/5+(-4)=-10 | | 4(k-3)=2 | | (2/X)=4/(x-1) | | 5v=18+2v | | 8k+(-40)=16 | | (8x+2)+(7x+17)=90 | | -3(-9z-10)+z=-2z | | 5m+8=-2 |